3.4.29 \(\int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx\) [329]

Optimal. Leaf size=86 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} e}+\frac {d \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e \sqrt {c d^2+a e^2}} \]

[Out]

arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))/e/c^(1/2)+d*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))/e/(a*
e^2+c*d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {858, 223, 212, 739} \begin {gather*} \frac {d \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e \sqrt {a e^2+c d^2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/((d + e*x)*Sqrt[a + c*x^2]),x]

[Out]

ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(Sqrt[c]*e) + (d*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^
2])])/(e*Sqrt[c*d^2 + a*e^2])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {x}{(d+e x) \sqrt {a+c x^2}} \, dx &=\frac {\int \frac {1}{\sqrt {a+c x^2}} \, dx}{e}-\frac {d \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{e}\\ &=\frac {\text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{e}+\frac {d \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{e}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} e}+\frac {d \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{e \sqrt {c d^2+a e^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.25, size = 98, normalized size = 1.14 \begin {gather*} \frac {\frac {2 d \tan ^{-1}\left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )}{\sqrt {-c d^2-a e^2}}-\frac {\log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )}{\sqrt {c}}}{e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/((d + e*x)*Sqrt[a + c*x^2]),x]

[Out]

((2*d*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a*e^2]])/Sqrt[-(c*d^2) - a*e^2] - Log[-(S
qrt[c]*x) + Sqrt[a + c*x^2]]/Sqrt[c])/e

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(150\) vs. \(2(74)=148\).
time = 0.06, size = 151, normalized size = 1.76

method result size
default \(\frac {\ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{e \sqrt {c}}+\frac {d \ln \left (\frac {\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}\) \(151\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(e*x+d)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/e*ln(x*c^(1/2)+(c*x^2+a)^(1/2))/c^(1/2)+d/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d
/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))

________________________________________________________________________________________

Maxima [A]
time = 0.31, size = 71, normalized size = 0.83 \begin {gather*} -\frac {d \operatorname {arsinh}\left (\frac {c d x}{\sqrt {a c} {\left | x e + d \right |}} - \frac {a e}{\sqrt {a c} {\left | x e + d \right |}}\right ) e^{\left (-2\right )}}{\sqrt {c d^{2} e^{\left (-2\right )} + a}} + \frac {\operatorname {arsinh}\left (\frac {c x}{\sqrt {a c}}\right ) e^{\left (-1\right )}}{\sqrt {c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

-d*arcsinh(c*d*x/(sqrt(a*c)*abs(x*e + d)) - a*e/(sqrt(a*c)*abs(x*e + d)))*e^(-2)/sqrt(c*d^2*e^(-2) + a) + arcs
inh(c*x/sqrt(a*c))*e^(-1)/sqrt(c)

________________________________________________________________________________________

Fricas [A]
time = 2.71, size = 620, normalized size = 7.21 \begin {gather*} \left [\frac {\sqrt {c d^{2} + a e^{2}} c d \log \left (-\frac {2 \, c^{2} d^{2} x^{2} - 2 \, a c d x e + a c d^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a} + {\left (a c x^{2} + 2 \, a^{2}\right )} e^{2}}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) + {\left (c d^{2} + a e^{2}\right )} \sqrt {c} \log \left (-2 \, c x^{2} - 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right )}{2 \, {\left (c^{2} d^{2} e + a c e^{3}\right )}}, -\frac {2 \, \sqrt {-c d^{2} - a e^{2}} c d \arctan \left (-\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{c^{2} d^{2} x^{2} + a c d^{2} + {\left (a c x^{2} + a^{2}\right )} e^{2}}\right ) - {\left (c d^{2} + a e^{2}\right )} \sqrt {c} \log \left (-2 \, c x^{2} - 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right )}{2 \, {\left (c^{2} d^{2} e + a c e^{3}\right )}}, \frac {\sqrt {c d^{2} + a e^{2}} c d \log \left (-\frac {2 \, c^{2} d^{2} x^{2} - 2 \, a c d x e + a c d^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a} + {\left (a c x^{2} + 2 \, a^{2}\right )} e^{2}}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) - 2 \, {\left (c d^{2} + a e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right )}{2 \, {\left (c^{2} d^{2} e + a c e^{3}\right )}}, -\frac {\sqrt {-c d^{2} - a e^{2}} c d \arctan \left (-\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{c^{2} d^{2} x^{2} + a c d^{2} + {\left (a c x^{2} + a^{2}\right )} e^{2}}\right ) + {\left (c d^{2} + a e^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right )}{c^{2} d^{2} e + a c e^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(c*d^2 + a*e^2)*c*d*log(-(2*c^2*d^2*x^2 - 2*a*c*d*x*e + a*c*d^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e
)*sqrt(c*x^2 + a) + (a*c*x^2 + 2*a^2)*e^2)/(x^2*e^2 + 2*d*x*e + d^2)) + (c*d^2 + a*e^2)*sqrt(c)*log(-2*c*x^2 -
 2*sqrt(c*x^2 + a)*sqrt(c)*x - a))/(c^2*d^2*e + a*c*e^3), -1/2*(2*sqrt(-c*d^2 - a*e^2)*c*d*arctan(-sqrt(-c*d^2
 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(c^2*d^2*x^2 + a*c*d^2 + (a*c*x^2 + a^2)*e^2)) - (c*d^2 + a*e^2)*sqrt(
c)*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a))/(c^2*d^2*e + a*c*e^3), 1/2*(sqrt(c*d^2 + a*e^2)*c*d*log(-(
2*c^2*d^2*x^2 - 2*a*c*d*x*e + a*c*d^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a) + (a*c*x^2 + 2*a^2
)*e^2)/(x^2*e^2 + 2*d*x*e + d^2)) - 2*(c*d^2 + a*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)))/(c^2*d^2*e
+ a*c*e^3), -(sqrt(-c*d^2 - a*e^2)*c*d*arctan(-sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(c^2*d^2*x^2
 + a*c*d^2 + (a*c*x^2 + a^2)*e^2)) + (c*d^2 + a*e^2)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)))/(c^2*d^2*e +
 a*c*e^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\sqrt {a + c x^{2}} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

Integral(x/(sqrt(a + c*x**2)*(d + e*x)), x)

________________________________________________________________________________________

Giac [A]
time = 1.11, size = 88, normalized size = 1.02 \begin {gather*} -\frac {2 \, d \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} - a e^{2}}}\right ) e^{\left (-1\right )}}{\sqrt {-c d^{2} - a e^{2}}} - \frac {e^{\left (-1\right )} \log \left ({\left | -\sqrt {c} x + \sqrt {c x^{2} + a} \right |}\right )}{\sqrt {c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

-2*d*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))*e^(-1)/sqrt(-c*d^2 - a*e^2) -
 e^(-1)*log(abs(-sqrt(c)*x + sqrt(c*x^2 + a)))/sqrt(c)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x}{\sqrt {c\,x^2+a}\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((a + c*x^2)^(1/2)*(d + e*x)),x)

[Out]

int(x/((a + c*x^2)^(1/2)*(d + e*x)), x)

________________________________________________________________________________________